Fig. 7. $(f_{\text{HFS}} - f_{\text{DS}})$ plotted vs atomic number at $\sin \theta / \lambda = 0.20$ and 0.70 Å^{-1} . effects are negligible and these two models differ only in this respect. The differences are essentially zero. (The small deviation from zero of the plotted differences at low atomic number arises for the most part from small inaccuracies in the analytic fits used to compute the differences). At the higher atomic numbers the difference is always negative because the relativistic DS atomic model is more compact than the non-relativistic HFS model. As a general rule, the inclusion of exchange has a greater effect on the scattering factors than does relativity. At the heaviest elements the two effects appear to be comparable. #### **Conclusions** Crystallographers now are overwhelmed with scattering factors and one might well ask which of these he should use. For the lighter elements, up to Rb⁺, the values given in *International Tables for X-ray Crystallography* (1962) are the best ones, for they have been computed from Hartree-Fock wave functions and in some cases from even more accurate wave functions. For these lighter elements, relativistic effects are trivial. For heavier elements it is suggested that the Dirac-Slater scattering factors are to be preferred because relativistic effects are accounted for and at least an approximation for exchange has been made. #### References ABRAHAMSON, A. A. (1961). Phys. Rev. 123, 538. BOYD, R. G., LARSON, A. C. & WABER, J. T. (1963). To be published. Cromer, D. T., Larson, A. C. & Waber, J. T. (1963). Los Alamos Scientific Laboratory Report, LASL-2987. CROMER, D. T., LARSON, A. C. & WABER, J. T. (1964). Acta Cryst. 17, 1044. CROMER, D. T. & WABER, J. T. (1964). Los Alamos Scientific Laboratory Report, LASL-3056. CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104. HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040. International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press. LIBERMAN, D., WABER, J. T. & CROMER, D. T. (1965). *Phys. Rev.* 137, A 27. WABER, J. T. & CROMER, D. T. (1965). J. Chem. Phys. In the press. Acta Cryst. (1965). 19, 227 ## The Crystal Structure of [18]annulene. I. X-ray Study BY JUDITH BREGMAN*, F.L. HIRSHFELD, D. RABINOVICH AND G.M.J. SCHMIDT Department of X-ray Crystallography, Weizmann Institute of Science, Rehovoth, Israel (Received 29 October 1964 and in revised form 8 January 1965) The crystal structure of [18] annulene has been determined by least-squares analysis of photographic X-ray data recorded at the temperature of boiling nitrogen. The molecules occupy crystallographic centers of symmetry in a structure closely resembling that of coronene. This molecular symmetry rules out the possibility of a structure with alternate long and short C-C bonds. Final carbon coordinates have estimated standard deviations averaging less than 0.004 Å; the hydrogen atoms have not been reliably located. #### Introduction The synthesis by Sondheimer and his collaborators (Sondheimer & Wolovsky, 1959; Sondheimer & Gao- * Present address: Department of Physics, Polytechnic Institute of Brooklyn, Brooklyn 1, N.Y., U.S.A. ni, 1960, 1961, 1962; Sondheimer, Wolovsky & Gaoni, 1960; Sondheimer, Wolovsky & Amiel, 1962; Sondheimer, 1963) of the monocyclic alternant hydrocarbons C_nH_n (n=14,16,18,20,24,30) has made available a class of compounds ('annulenes') of considerable theoretical interest. In cooperation with Prof. Sondheimer, Dr R. Wolovsky, and Dr Y. Gaoni, we have undertaken structure analyses of two compounds in this series that are sufficiently stable to permit X-ray work. An account of the partial analysis of [14]annulene has been given by one of us (Bregman, 1962); preliminary results of the structure determination of [18]annulene were presented at the Cambridge meeting of the I.U.Cr. (Bregman & Rabinovich, 1960). The present paper reports the three-dimensional analysis of [18]annulene near 80 °K; the following paper (part II) gives the results of this study together with a discussion of the in-plane and out-of-plane molecular deformations. ### **Experimental** Crystals of [18]annulene, grown from slowly cooled solutions in chloroform, are thin monoclinic laths, dark brown, with occasional greenish sheen. They are elongated along [010], showing $\{001\}$ and $\{20\overline{1}\}$, with pronounced cleavage along planes parallel to [010]. Room-temperature Cu Kα photographs, which record few reflexions beyond $\sin \theta = 0.32$, yield the cell constants listed in Table 1. Systematically absent are reflexions h0l with h odd, 0k0 with k odd; the space group is $P2_1/a$. At the temperature of boiling nitrogen these crystals reflect throughout the reciprocal-lattice region accessible to Cu $K\alpha$ radiation; cell dimensions (Table 1) were determined from high-angle reflexions. The systematic absences of $P2_1/a$ were obeyed throughout the range of recorded reflexions. With two molecules of C₁₈H₁₈ per unit cell, the calculated density is 1.144 at 80 °K. The space group then demands that the molecule be centrosymmetric, unless the structure is disordered. This last contingency has been ruled out by refinement of an ordered model to a structure yielding acceptable agreement between F_o and F_c and showing no anomalies in the thermal parameters (see part II). [18] Annulene cannot, therefore, be formulated as a molecule with alternate single and double bonds. Examination of a large number of crystals revealed the frequent occurrence of twinning across (001), made possible by the near equality (within 1.2%) of c^* and $4a^*\cos\beta^*$. The twinned crystals give, at room temperature, X-ray photographs that appear to have been produced by crystals having a doubled c axis and showing non-space-group extinctions for h even, L (=2l) odd. At low temperature high-angle spots are found to be split, suggesting that the phenomenon observed is one of twinning rather than of polymorphism or super-lattice formation. This conclusion is confirmed by the fact that the positions and intensities of all spots appearing on photographs of a twinned crystal can be exactly simulated by the superposition in mirror orientation of pairs of reciprocal-lattice nets derived from photographs of untwinned crystals. This superposition brings into near coincidence spots due to reflexions h, k, l and h, k, $-\frac{1}{2}(h+2l)$. Reflexions from an untwinned crystal were recorded with Cu $K\alpha$ radiation by the equi-inclination Weissenberg technique in levels perpendicular to [010] up to k=3. The crystal was held near the temperature of boiling nitrogen by the device described by Hirshfeld & Schmidt (1956). From a crystal trimmed with a razor blade 0kl intensity data were collected that enabled us to place I(hkl) (k=0,1,2,3) on a common scale. However, the quality of cut crystals was inadequate to permit intensity photographs about another axis. The numbers of reflexions, observed plus unobserved, were 183, 356, 335, and 284, respectively, for k=0,1,2,3 and 3. Ten 04l reflexions were also included in the refinement process. The intensities were estimated visually and corrected in the usual way; corrections for spot-shape extension, due to Phillips (1956), were applied to the data from upper-level photographs. #### Solution and refinement Comparison of the cell dimensions of [18]annulene and of coronene (Table 1) suggests a similarity in molecular shape and packing arrangement; since the strong high-order h0l reflexions (207; $40\overline{5}$; 602; $10,0,\overline{3}$; 14,0,1; $14,0,\overline{8}$; $16,0,\overline{1}$), used by Robertson & White (1945) for the solution of the latter structure, were, with the exception of 14,0,1, outstandingly strong in [18]annulene too, the x, z parameters of the peripheral carbon atoms of coronene were inserted into F(h0l) structure-factor and least-squares calculations. The correctness of this model quickly became evident. Refinement was accomplished on WEIZAC by a least-squares program modelled after the procedure described by Rossmann, Jacobson, Hirshfeld & Lipscomb (1959). This program seeks to minimize the discrepancy function $$r = \sum w(K^2 F_0^2 - F_0^2)^2 / \sum wK^4 F_0^4$$ (1) with respect to the scale factor K^2 and the positional and thermal parameters of the atoms in the asymmetric unit. It uses the linear diagonal approximation for Table 1. Crystal data for [18]annulene and coronene | | a (Å) | b (Å) | c (Å) | β | Z | Space group | |--|-------------------|------------------|-------------------|--------------------|---|-------------| | $C_{18}H_{18}$ at $80^{\circ}K$ | 14·889
+ 0·004 | 4·800
+ 0·002 | 10·235
+ 0·003 | 111·60°
+ 0·14° | 2 | $P2_1/a$ | | C ₁₈ H ₁₈ , room temperature | 15.33 | 4.88 | 10.27 | 111·8° | 2 | $P2_1/a$ | | Coronene, room temperature | 16.10 | 4.695 | 10.15 | 110·8° | 2 | $P2_1/a$ | the computation of the shifts in all parameters, except that the scale factor K^2 and an average, isotropic, thermal parameter are adjusted separately by solution of an appropriate 2×2 matrix (Cruickshank, 1961). For each reflexion, the weighting factor w_{hkl} was obtained by the summation of weights assigned to the individual spots on the several films on which the reflexion was recorded. These individual weights were a function of the film blackening and of the factors required for translation of the spot readings into scaled values of F_o^2 . This procedure yielded weights that varied roughly as F_o^{-4} for most reflexions, with decreased weights for the weak and the very strong reflexions. The summations in equation (1) comprise all except those unobserved reflexions for which $|F_c| < KF_t$, where F_t is a threshold value estimated for each unobserved reflexion. Scattering-factor curves were taken from Berghuis, Haanappel, Potters, Loopstra, Mac-Gillavry & Veenendaal (1955) for carbon and from McWeeny (1951) for hydrogen. Refinement of the (010) projection proceeded satisfactorily, initially with isotropic carbon atoms only. Next, hydrogen coordinates derived from a difference synthesis $\Delta \varrho(x, z)$ were inserted into the least-squares calculations, and the refinement of the carbon parameters was continued for several additional cycles. In the next stage y parameters of all atoms were derived for a hypothetical planar molecule; this model was tested by structure-factor calculations for F(h11) and found to give reasonable agreement. Because of the diagonal approximation used in the least-squares program, it was desirable to refer the structure to nearly orthogonal axes. The coincidence in cell dimensions responsible for the twinning (see above) provided such a coordinate system, based on a unit cell four times the size of the primitive cell. The axes of this cell, having a monoclinic angle of 90·26°, are obtained from the conventional axes by the transformation whose matrix is $$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 4 \end{array}\right)$$ In the first four three-dimensional refinement cycles, only the scale factor K^2 , the y parameters, and the isotropic thermal parameters (B) of the carbon atoms were varied; next all the carbon parameters were re- Fig. 1. Electron density in mean molecular plane. Contours at intervals of 1 e.Å-3, zero contour broken. Molecular outline shows projected atomic positions based on least-squares refinement. Table 2. Atomic coordinates | | Refer | red to crystal ax | es | Reie | terred to molecular axes | | | | |------|---------|-------------------|--------|-------|--------------------------|--------------|--|--| | Atom | x | y | Z | L(Å) | M(Å) | N(Å) | | | | C(1) | -0.1147 | -0.4574 | 0.0430 | 0.424 | -2.881 | 0.061 | | | | C(2) | -0.1068 | -0.5089 | 0.1807 | 1.742 | -3.323 | -0.015 | | | | C(3) | -0.0441 | -0.3627 | 0.2988 | 2.864 | − 2·467 | -0.058 | | | | C(4) | 0.0151 | -0.1483 | 0.2903 | 2.775 | −1 ·091 | -0.053 | | | | C(5) | 0.0836 | -0.0082 | 0.3995 | 3.807 | -0.178 | 0.010 | | | | C(6) | 0.1430 | 0.2077 | 0.3781 | 3.594 | 1.236 | 0.041 | | | | C(7) | 0.1416 | 0.2877 | 0.2474 | 2.343 | 1.828 | 0.085 | | | | C(8) | 0.1885 | 0.5084 | 0.2154 | 2.034 | 3.162 | -0.013 | | | | C(9) | 0.1771 | 0.5884 | 0.0770 | 0.715 | 3.675 | -0.064 | | | | H(1) | -0.072 | -0.278 | 0.031 | 0.31 | −1·79 | 0.00 | | | | H(2) | -0.143 | -0.668 | 0.197 | 1.90 | -4.30 | 0.04 | | | | H(3) | -0.043 | -0.427 | 0.390 | 3.74 | - 2 ⋅91 | -0.06 | | | | H(4) | 0.006 | 0·078 | 0.195 | 1.86 | - 0·69 | -0.14 | | | | H(5) | 0.095 | - 0·054 | 0.499 | 4.76 | 0·47 | 0.05 | | | | H(6) | 0.187 | 0.320 | 0.464 | 4.41 | 1.87 | -0.02 | | | | H(7) | 0.107 | 0.168 | 0.174 | 1.64 | 1.24 | 0.25 | | | | H(8) | 0.227 | 0.626 | 0.297 | 2.81 | 3⋅77 | -0.15 | | | | H(9) | 0.211 | 0.749 | 0.060 | 0.55 | 4.63 | -0.16 | | | fined. After several further cycles anisotropic carbon thermal parameters β_{ij} (i, j=1, 2, 3) were introduced (Cruickshank, 1956), and only when the nine parameters per carbon atom had reached essentially stationary values were the positional and isotropic thermal parameters of the hydrogen atoms allowed to vary. After 28 cycles the discrepancy factor r had reached 0.0372. At this stage bond lengths and angles were calculated, as well as the equation of the best plane through the carbon skeleton and the deviations of the carbon and hydrogen atoms from this plane. The carbon skeleton conformed closely to symmetry 3; on the other hand, the displacements of hydrogen atoms from the mean plane did not follow a similar pattern. In particular, the position of H(1) appeared, on the criterion of molecular symmetry 3, to be in serious error. A three-dimensional difference synthesis based on $F_o - F'_c$ (with the sign of F_c , including hydrogen contributions, attached to F_o ; carbon contributions alone for F'_c) was computed in the neighborhood of H(1) and H(4). While for the latter the electron-density maximum coincided within 0.02 Å with the position derived by the leastsquares procedure, the electron density near H(1) indicated a position 0.11 Å above, rather than 0.14 Å below, the mean plane of the carbon atoms. This more plausible location for H(1) was inserted into further least-squares calculations, but these returned the atom to its former position. The entire set of intensity data was re-checked for human errors, and minor corrections were made in the intensities of about 100 reflexions, especially at high angles. About 60 further reflexions were assigned zero weights because of high background scattering or because of suspected interference by the beam catcher. New hydrogen coordinates were postulated, based on the last set of carbon coordinates and the assumption that each C-H bond, of length 1.00 Å, lay in the plane defined by the three adjacent carbon atoms and bisected the C-C-C angle. The positional and thermal parameters of the carbon atoms were refined for another five cycles, after which the hydrogen parameters were again allowed to change. The final hydrogen positions did not show any significant improvement, though the anomaly in H(1) was smaller than before. A new three-dimensional difference synthesis, calculated in the same way as the previous one, showed maxima at positions differing by up to 0.14 Å from the hydrogen positions given by least-squares. All hydrogen atoms showed marked anisotropy; the electron-density distributions resembled Table 3. Direction cosines of the molecular inertial axes with respect to the crystal axes | | a | b | \boldsymbol{c} | |---|---------|---------|------------------| | L | -0.0393 | 0.0266 | 0.9433 | | M | 0.6593 | 0.7517 | -0.2370 | | N | 0.7509 | -0.6587 | -0.2325 | Table 4. Estimated standard deviations (average) of atomic coordinates and thermal tensor components, referred to the edges of a nearly orthogonal cell having a = 14.889, b = 4.800, c' = 38.059 Å, $\beta' = 90.26^{\circ}$ (This is the cell used for the diagonal least-squares refinement) | Carbon:
$a\sigma(x') = 0.0024 \text{ Å}$
$\sigma(U'_{11}) = 0.0010 \text{ Å}^2$
$\sigma(U'_{12}) = 0.0013 \text{ Å}^2$ | $b\sigma(y) = 0.004 \text{ Å}$
$\sigma(U'_{22}) = 0.0026 \text{ Å}^2$
$\sigma(U'_{23}) = 0.0014 \text{ Å}^2$ | $c'\sigma(z') = 0.0023 \text{ Å}$
$\sigma(U'_{33}) = 0.0010 \text{ Å}^2$
$\sigma(U'_{13}) = 0.0008 \text{ Å}^2$ | |---|--|---| | Hydrogen: $a\sigma(x') = 0.030 \text{ Å}$ | $b\sigma(y) = 0.038 \text{ Å}$
$\sigma(u^2) = 0.008 \text{ Å}^2$ | $c'\sigma(z') = 0.027 \text{ Å}$ | ## Table 5. Observed and calculated structure factors Those marked with an asterisk were eliminated from the final refinement because of high background scattering or because of possible interference by the backstop. | <u>h</u> <u>k</u> <u>l</u> | 100 <u>F</u> _o 100 <u>F</u> _c | <u>h</u> <u>k</u> <u>1</u> 100 <u>F</u> ₀ 100 <u>F</u> _c | <u>h</u> <u>k</u> <u>1</u> 100 <u>F</u> _o | 100 <u>F</u> c | <u>h</u> <u>k</u> <u>1</u> | 100 F ₀ 100 F _c | <u>h</u> <u>k</u> <u>1</u> | 100 <u>F</u> 10 | |---|--|--|--|---|---|--|---|---| | 18 0 -1* -2 -3 -4 -5 -6 -7 -8* | 1325 1589
713 713
540 -480
458 4,6
342 -376
223 234
531 492 | -11° (41 -785
6 0 10° 102 -324
9 880 771
8 390 334
7 1812 -1838
6 15:11 -1449
5 16:10° -1506 | -13 248
-12 663
-11 599
-10 219
-9 505
-8 <231
-7 810 | -259
-630
-592
-220
481
163
71 ¹ | -3;
-10
-9
-6
-7
-6
-5 | 2-30 2677
1525 -1606
700 715
671 617
380 -410
1372 1319
278 219 | -4
-3
-2
-1
0
1 | 395 3
1000 9
1137 12
1532 -15
2831 30
964 -9
387 4
1248 13 | | 16 0 2*
1
0
-1
-2 | 946 -1162
480 684
967 -971
313 268
2386 2307
763 -743 | 4 10°6 1097 5 <188 -1192 8 4057 -4,381 1 486 304 0 1790 1792 | -6 <231
-5 569
-1 360
-3 76;
-2 600
-1 271
0 591
1 481 | -90
818
265
684
602
229
561 | -3
-2
-2
0
1 | 832 -836
481 -519
197 81
12-7 1367
14-17 1512
<2.2 142
<212 209 | 3
5
6
7
8 | 286 271 2
533 5
423 -3
<219 1
350 -5 | | -3
-4
-5
-6
-7
-8
-9 | 513 469 <203 214 <249 69 603 -528 1025 1103 342 396 547 -582 844 -871 | -1 975 854 -7 2740 1540 -3 1540 1559 -1 994 859 -5 551 -562 -6 <48t -7 954 938 -8 <219 93 -8 <219 -9 <226 -113 | 2 | -401
582
-668
-762
72
-53
607 | 3
5
6
7
8 | 1160 -1202
702 -699
948 1028
<212 23
248 266
635 655
<205 -305
<170 -189 | 10
11
12
13
-18 1 3
-17
-16 | 651 -5.
<2231.
467 4.
4014.
<197 1.
<1881. | | 14 0 4
3
2
1
0 | <214 33
417 343
1785 -1723
611 -650
618 -682 | -10 <226 -8
-11 626 587
-12 <175 -59
-13 379 313
4 0 10 553 526
9 472 472 | -12 497
-11 <242
-10 724
-9 682
-8 <212
-7 334 | -375
-78
-630
721
144
351
362
-859 | 10
11
-18 1 6
-17
-16
-15
-14 | <107 146
595 502
<197 -81
395 -306
174 340 | -15
-14
-23
-12
-11
-10 | 553 -4
306 -3
505 -4 | | -2
-3
-4
-5
-6
-7
-8 | 975 -982
962 972
844 849
707 695
1098 -1182
611 630
3755 3377 | 7 1696 1756
6 1310 1266
5 1440 -1481
4 1696 1613 | -6 372
-5 854
-4 262
-3 289
-2 510
-1 <204
0 <197 | -859
-266
-280
-574
239
77
780
162 | -13
-12
-11
-10
-9
-8 | 344 -260
927 964
<219 131
<212 255
964 -987 | -9
-8
-7
-6
-5
-4
-3
-2 | 2197 1. 365 -3 358 2 1672 -15; 620 -6 255 -2 1379 -12; 212 2 271 -2 | | -9
-10
-11
-12
12 0 6
5 | 3755 3377
349 -441
822 -762
618 620
<79 -101
240 273
2214 -70
1034 -925 | 0 5328 -5116
-1 7125 -6315
-2 4533 -4259
-3 2038 2047
-4 540 -534 | 0 <197 1 795 2 <223 3 205 4 818 5 547 -17 1 9 818 -16 <146 | 236
-733
-508
893
208 | -7
-6
-5
-4
-3
-2
-1 | 2022 -2059
<181 133
1073 1058
<176 -109
780 705
1313 -1368
181 -325
1445 -1501 | -1
0
1
2
3 | 1904 199
<125 119663 -796
2481 -2596
1795 -186
1532 -1696 | | 3
2
1
0
-1
-2
-3 | <21.9 98
27.6 24.9
<234 -14.0
<22.6 -24.6
502 -44.0
81.5 794 | -7 1669 1162
-8 269 204
-9 997 1115
-10 1663 1197
-11 <249 1144 | -15 1241
-14 <181
-13 832
-12 700
-11 752 | -1171
120
-705
662
-711
667 | 0
1
2
3
4
5 | 1445 -1501
745 -753
423 -372
1563 -1626
334 -297
1358 1306 -1375 | 5
6
7
8
9
10 | 452 4
372 2
1125 10
568 -56
979 9
<219 -1663 6 | | -5
-6
-7
-8 | 830 -818
226 -225
676 -666
1740 -1882
<234 -118
394 -4#8
1201 -1396 | -12 370 -400
2 0 10 1268 1137
9 1091 -1254
8 234 182
7 4563 4819
6 <203 -162
5 1521 -1643
4 931 930 | -9 <219
-8 219
-7 518
-6 584
-5 1423
-4 <219
-3 810
-2 540 | 78
-251
554
-510
-1517
209
-836 | 7
8
9
10
11
12 | 1781 2038 <212 -230 591 -470 905 893 <179 -69 | 12
13
14
15
-18 1 2
-17 | 438 421 34 3 421 240 2 979 -9 181 1 293 -3 651 651 | | -9
-10
-11
-12
10 0 7
6
5 | 815 826
707 766
298 295
<186 153
1034 1123
801 911 | 3 1206 1201
2 1529 1464
1 5952 -5890
0 2373 2123
-1 1382 1229
-2 5100 -5498 | -1 <219 0 1430 1 334 2 <212 3 849 4 <231 | -577
-75
-1522
-340
1 6 4
6 6 9
145 | -18 1 5
-17
-16
-15
-14
-13
-12 | 730 727
408 -359
760 760
<204 -27
<219 207
489 545
380 356
<212 -10 | -15
-14
-13
-12
-11
-10 | 561 -5
1058 10 | | 3
2
1
0
-1
-2 | <226 35
263 235
1170 1251
1550 1548
641 667
547 563
641 -621 | -3 3369 3395
-4 916 -935
-5 291 -3 6
-6 1951 1855
-7 1288 -1230
-8 1513 -1520
-9 858 -849 | 5 <214
6 1921
7 <153
8 <51
-18 1 8 <94
-17 76
-16 898 | 156
-942
31
-68
211
736
8 6 0 | -11
-10
-9
-8
-7
-6 | <212 -10
787 -141
752 -759
226 -261
1642 -1754
714 -696
286 -244 | -9
-8
-7
-6
-5
-4
-3 | 708 -6 4241 -39 1563 12 1262 -11 1664 -15 | | -3
-4
-5
-6
-7
-8
-9 | 3144 -3195
466 406
458 334
962 -947
931 -898
1156 636 | -10 611 627
-11 <242 -61
-12 1506 -1331
0 0 12 750 -782
11 181 -236
10 1193 1067 | -15 1125
-14 434
-13 <212
-12 795
-11 964
-10 219 | -1050
366
-43
-763
1026 | -5
-4
-3
-2
-1
0 | 745 -781
767 827
1 000 101 5
956 -8 09
737 656
964 977 | -2
-1
0
1
2 | 3211 -36
832 -8
854 9
1758 20
614 -5
767 -7
1934 -20 | | -10
-11
-12
-13
8 0 9 | <219 226 <242 -210 473 477 626 -947 865 -1106 458 502 448 324 <226 -150 | 8 656 -651
7 649 -653
6 1498 -1559
5 1295 1299
4 1041 1118 | -9 577 -8 1145 -7 <212 -6 839 -5 780 -4 540 -3 423 | -5 68
11 90
4
-811
-782
-521
379 | 2
3
5
6
7
8 | 553 -585
<188 -32
724 746
795 -834
505 538
<219 72
380 -350
1051 -1139
<249 85 | 5
6
7
8
9 | 365 3
467 4
780 7
737 6
1 0 73 -10 | | 7
5
1,
3
2 | <234 -198
<226 80
707 646
1513 -1414
1208 -1042 | 2 4314 -4635
1* 916 945
-6 1 13* 262 -353
-13 1 12* 278 -384
-12 139 244
-11 255 259 | -2 1795
-1 2342
0 635
1 511
2 313
3 1496 | -521
379
1875
2588
653
-527
-298
-1616 | 9
10
11
12
13
-18 1 4 | <186 46
561 641
132 122 | 11
12
13
14
15
16 * | 760 -7 591 -5 <204 <223 - 481 3 <109 -1 416 5 927 -9 | | -1
-2
-3
-4
-5 | 480 476 1607 1511 946 826 291 139 931 875 1201 1119 | -10 240 317
-9 481 9
-8 321 270
-7 474 -454
-6 488 70
-5 787 -755
-4 181 -156 | 5 54 0
6 730
7 423
8 328
9 459 | 1178
-548
747
-418
-395
469
-576
-205 | -17
-16
-15
-14
-13
-12
-11 | 606 598
387 -215
627 -674
752 -809
584 -556
431 -390
803 760 | -17
-16
-15
-14
-13
-12 | <269 1
627 5
905 -8
599 5 | | -6
-7
-8
-9
-10
-11 | 1819 1821
924 896
226 215
234 -238
1477 -1817
<249 -52
249 354 | -3 452 -477
-2 372 -337
-1 299 219
0 <117 -62
-15 1 11 511 665
-14 <125 38 | -16 1 7 540
-17 181
-16 986
-15 1174
-14 <212
-13 <219
-12 406 | -205
-976
-1022
82
-135
-414 | -10
-9
-8
-7
-6 | 803 760
395 -325
1110 1066
<176 -110
1825 1790
810 783
1460 1539 | -11
-10
-9
-8
-7
-6 | 1183 10
293 2
2183 -20
1956 -16
547 -4 | # Table 5 (cont.) | <u>h</u> <u>k</u> <u>l</u> | 100 <u>F</u> o | 100 <u>F</u> c | | h s | 1 | 100 F _o | 100 <u>F</u> c | h k j | <u>.</u> | 100 <u>F</u> o | 100 F _c | <u>h</u> k | ī | 100 <u>F</u> o | 100 F _e | <u>h</u> k | | 100 <u>F</u> 0 | 100 <u>F</u> c | |-------------------------------------|----------------------------------|--|---|--|----|--------------------------------------|---|----------------------------|------------|--------------------------------------|------------------------------|---|-----|---|-----------------------------------|----------------------------|---------------|---|---| | -5
-4 | 4 0 43
6269 | 3792
5962
8 0 41 | | -2
-1
0
1 | | 14 0 7
<197 | -1592
22 | -12
-11
-10 | | 616
<2 0 5
7 0 1 | 556
76
658 | -7
-6 | | 18 04
89 0
<135
3154 | 1766
8 0 5
•54 | -14 3
-12
-11 | 9 | 677
265
434
236 | 755
-209
-429
-174 | | -3
-2 *
-1 * | 7918
1313
4561 | 8041
1233
-4088 | | 0 | | <191
357
582 | -214
269
474 | -4 | | 1211 | 658
1087
-498 | -5
-4
-3 | | <135
3154
941 | -54
-3343
912 | -10 | | 324 | | | 0 . | 350
4670 | 429
- 38 0 0 | | 3 | | 607
155 | -511
119 | -8
-7
-6 | | 1033
326
855 | 1009
-290
903 | -3
-2
-1 | | 340
354 | 281
344 | -9
-8 | | 1325
972
1606 | 1270
959
1637 | | 2
3
4 | 3773
1539 | 4027
-1605
2246 | | 5 | 4 | 326
629 | -346
552
-354
-18 | -5
-4
-3 | | 389
1160 | -340
-340 | 5
0 | | <7145
383
858 | 894
-355 | -7
-6
-5
-4 | | 1605
< ?79
<228 | 1270
959
1637
-199
-151
-819 | | 5
6 | 2240
176
<153
1547 | -141
-66 | | -17 2
-16 | 8* | <57
<92
411 | 388 | -3
-2 | | 6 0 ₿
<162 | 559
137
1540 | 3 | | 1062 | 1350
-36
1026 | -4
-3
-2 | | 868
<279 | | | 7
8
9 | <181
1386 | 1534
-154
-1416 | | -15
-14 | | 14?
763
<183 | 120
652 | 0
1
2 | | 1506
⊲77
666 | -52
653 | 5
6
7 | | 970
474
1182 | -958
-456
-1270
-469 | -1
0
1 | | <271
479
<252
297 | 156
387
-8 | | 15
11
10 | 651
1554
<219 | 626
-1535
-120 | | -13
-12
-11 | | 466
1055 | 155
-492
1228 | 3
4 | | 581
24 0
425 | -5 0 4
243
-441 | 7
8
9
10 | | 531
778
481 | -782 | 5 | | < 200 | -230
43 | | 13
14 | <212
927 | 104
-926 | | -10
-9
-8 | | 205
736
970 | -239
7 0 5
-1132 | 5
6
7
8 | | 997
< 205 | -1086
-14 | 11 | | 813
446 | -506
-863
380 | 4
5 | *
8 | 398
398 | -230
43
-347
-235
-434
259
124 | | 15
16
17 | <214
<170
<38 | -89
84
181 | | -9
-8
-7
-6
-5
-4
-3
-2
-1 | | 354
411 | 325
-476
1284 | 9
10 | | <197
855
1456 | -234
-739
1392 | 12
13
14
15 | | <208
708
<112 | -148
605
-88 | -15 3
-14
-13
-12 | ŭ | 375
361
< 226 | 259
124 | | 17
17 1 0
16 | < 38
971
242
518 | -1003
-212 | | -4
-3 | | 13 0 2
198 0
594 | 2251
608 | -18 5 f | 40 | 678
<146 | -84
-84 | 15
-17 2
-16 | 1 | 268
297
<17 0 | -176
234
171 | -12
-11 | | 353
737
851 | 304
646
-615 | | 15
14
13 | 62 0
2006 | 506
615
2043 | | -2
-1
0 | | 205
205
1147 | -97
-106
-1241 | -17
-16 | | <85
601
<198 | -589
-191 | -13 | | 551
1182 | -646
1119 | -9
-8
-7
-6 | | 226 | -615
-259
94
-498
295
-762 | | 13
12
11
10 | 1366
< 2 :2
760 | 2043
1364
-78
-708 | | 5 | | < 205
750
240 | -1241
183
766 | -15
-14
-13 | | 404
<197
658 | 291
-167
682 | -12
-11
-10 | | <2 0 5
247
14 0 7 | 27
2 0 8
-1379 | -6
-5
-4 | | <243
546
<243
795
<243 | 295
-762 | | 9 ' | 326
1110
<161 | -991
-89 | | 3 4 5 6 | | 496
<177 | 452
-250 | -12
-11
-10 | | 559
<197
<197 | -569
82
177
46 | -9
-8 | | 587
524
2243 | 505
419
2375 | -4
-3
-2 | | < 243
243 | -108
-19
-53
839
208 | | 7
6
5
4 | 1781
547
7 0 8 | 1799
-492 | | 6
7
8 | | 340
< 181
396 | -371
108
-376 | -9
-8 | | 183
312 | 302
167 | -7
-6
-5 | | 3304
813
1634
566 | 3528
7 0 2 | -1
0 | | 78 0
< 236
228 | 839
208
-166 | | 3 | 7 0 8
4649
3225 | -657
4807
-3460 | | -17 2
-16 | 7* | 24 0
347
162 | -158
255
205
613 | -9
-8
-7
-6
-5 | | 17 0
326
87 0 | 297
874 | -5
-4
-3
-2 | | 1634
566
1930 | -173 ^L
571
-2181 | -1
0
1
2
3 | | 1 000
516 | 878
-360
183 | | -10 2 12 | 361
247
< 130 | 429
252
-28 | | -15
-14
-13
-12 | | 616
<191 | -187 | -4
-3
-2 | | 333
<147
1 0 62 | 256
177
-1090 | -1
0 | : | 1930
347
1379
658 | 413
1637
-687 | 5 | | 234
2 06
7 00
288 | -155
-641
382
-218 | | -9
-8
-7
-6 | 454
559 | 454
520 | | -12
-11 | | 1196
2 0 5
460 | -1396
-1460 | -1
0 | | 1810
396 | -1961
-3 00 | 1
2
3
4 | • | 551
785 | 557
892 | -16 3 | 7* | 288
<1.0 3
485 | -218
-218 | | -5
-4 | < 138
658
< 130 | -134
662
-183 | | -9
-8 | | 205
1938 | -378 | 1
2
3 | | 333
489
1563 | 291
-430
1523 | 5 | | 708
<147
934 | -690
-70
-1022 | -15
-14
-13 | | 721
500
221 | -655 | | -3 *
-2 *
-14 2 11 * | 312
205
< 63 | 342
-285
-360 | | -9
-8
-7
-6
-5 | | 1117
418
<197
1244 | 2237
-1137
-348
103 | 5 | | <183
268
763 | -150
-310
724 | 7
8
9 | | 177
1117
1174 | -263
1168
1190 | -13
-12
-11
-10 | | 570
243 | -208
497
57 | | | <121
147
1005 | 203
-106 | | -3
-2,
-1 | | 460
502
883 | -1274
-392
-386
-851 | 7
8
9 | | 608
354
1047 | 724
556
-203 | 10 | | 1359
538 | 1366
533
-1058 | -9
-8
-7 | | 346
39 0
1156 | -333 | | -12
-11
-10
-9
-8
-7 | 481
383 | 915
- 39 0
329
-181 | | 0 | | 883
629
319 | -851
-594
267
644 | 10 | | < 191
389 | -203
1137
-87
367 | 12
13
14 | | 1097
<183
459 | 168 | -7
-6
-5 | | <251
914 | -1194
-133
-838
-18 | | -6 | <191
<191
197 | -181
37
116 | | 1
2
3
4 | | 721
205
516
439 | 644
245
461
476 | 12
13
-18 2 | 3 * | <191
439
<70 | -245
407
52
-21 | 15
16
17 2
16 | ۰, | 5 0 2
347
<42 | -373
499
384
-66 | -5
-4
-3
-2 | | 1156
<251
914
<251
744
744 | -765
701
428 | | -5
-4
-3
-2 | 197
268 | 21.3
339 | | 5 | | 460 | -408 | -17
-16
-15 | | <154
446
<177 | -21
386
228 | 16
15 | | 396
155
1455 | 381
235
-1476 | -1
0
1 | | 464
353
251 | -357
110 | | -2
-1
0 | 559
375
24 0
587 | 519
338
210
-544 | | 7
3
9 | | 950
842
333
581 | 1018
-772
313
-720 | -14
-13
-12 | | 919
474
354 | 929
-348
-300 | 15
14
13
12
11
10
9
8 | | <107 | -135
350
630 | 2
3
4 | | 353
251
243
552
641 | -224
-475
680 | | 2 . | 502
226 | -463
-260 | | 10
13 2
-17 | 6* | 581
347
<154 | ~72 0
570
17 | -11
-10 | | 1068 | -1080
-784
-750 | 10 | | 454
658
2208
976
955
439 | 2174
933
-1061 | 5
6
7 | | 369
516
<206 | 349
-422
38
-376
207 | | -15 2 10*
-14
-13
-12 | <92
262
<174 | -112
256
-159 | | -16
-15 | | 2 6 8 | 324
219 | -9
-3
-7
-6 | | 855
713
276
1833 | -227
-198 0 | 8
7
6 | | 955
439
1571 | -1061
319
-1714 | -16 3 | 6 | 339
257
252
<244 | -376
207 | | -12
-11
-10 | 658
262
212 | 651 | | 14
13
12 | | 425
581
2 0 5
581 | 420
-591
-189 | -6
-5
-4 | | 991
1399
1259 | -885
-1515
1314 | 5
4 | | 186 0
898
1449 | 1952
-954
1867 | -15
-14
-13 | | 341 | 183
75
228 | | -9
-8
-7
-6 | 728
474 | 234
-808
-453
-634
-262 | : | -11
-10
-9 | | 581
1436
466 | -587
-1500
-439 | -5
-4
-3
-2
-1 | | 1399
1259
<127
516
1443 | 1314
112
467 | 3
2
0 | • | 177
2 0 54 | 133 | -13
-12
-11
-10 | | 228
382 | -76
312 | | -7
-6
-5
-4 | 629
295
887 | -929 | | -9
-8
-7
-5
-4 | | 1 090
1514
1571 | 1073
-1635
1741 | 0 | | 1386 | -1537
-1470
-985 | -10 | n. | <63
<110
737 | -254
-181
-796 | -9
-8
-7 | | <251
<251
862
346 | 15
852
-385
144
1814
-1411 | | -4
-3
-2 | 629
81 0
519 | -568
-882
474 | | -5
-4 | | 254
1012
763
771 | -231
-996
691 | 2
3
4 | | 312
1895
701 | -230
2034
-720
404 | -9
-8
-7
-6 | | 737
<189
729
<180 | -796
-63
-671
-69 | -7
-6
-5 | | <243
1626 | 144
1814 | | -1
0
1 | 339
651 | 570 | | -3
-2
-1 | | 820 | -672 | 5
6
7 | | 431
297
756 | 404
-221
-767 | -5
-4 | | 603
339
369 | 580
376 | -5
-4
-3
-2
-1 | | 1457
1540
< 243
641 | -1411
16 0 9
192
-6 0 1 | | 3 | 319
756
4 0 4 | -183
-644
-279 | | 2
0 | | 183
361
460 | 107
-302
449
163 | 8 | | <197
<205 | 122
1 05 | -3
-2
-13 3 | 10* | < 170 | -300
-52
-441 | -1
0 | | 641
574
493
862 | -601
493 | | -16 2 9**
-15 | 219
<12 0
216 | -216
-97
-301 | | 3 | | 361
460
197
205
<205 | 163
-291
-112 | 10
11
12
13
14 | | <197
<191
375
<191 | 197
195
307 | -13 3
-12
-11
-10 | | 316
663
243 | -668
-263 | 0
1
2
3 | | 862
582
346 | 493
-467
-839
-644
-313
-39
162 | | -14
-13
-12
-11 | 559
2 0 5
347 | 517
-151 | | 6
7
8 | | 934
<197 | -894
-212 | -17 2 | 2 | 460
312 | -436
-276 | -9
-8 | | 295
574
567
773 | 336
561
560
-695
-461 | 4
5
6 | | <236
<228 | -313
-39
162 | | -10 | 249
333
7 0 8 | 258
185
-3 0 9
-767 | | 9
1 0 | | 1268
756
460 | 1009
-729
522 | -16
-15 | | 398
436 | 205
374
269 | -9
-8
-7
-6
-5
-4 | | 516
831
<234 | -461
-741
81 | 7
8
9 | | <205
<226
-559 | -121
-169
-169 | | -9
-8
-7
-6 | 693
<197
1217 | -772
-156
1444 | | 116
116
117
116 | 5* | 383
<85
531 | -390
-86
-586 | -13
-12
-11 | | 304
247
763
1267 | 19 0
-627
-1227 | -3
-2
-1 | | 523 | 387
86 | 10
-16 3
-15 | 3 5 | <103
<141
361
<252 | 237
73
326
-126 | | -5
-4 | 934
955 | 989
912 | | 16
15
14 | | 531
<191
643
454 | -390
-86
-586
-95
573
-426 | -1 0
-9 | | 984
842 | -925
695 | -1
0
1 | | <217
479
221 | -422
202 | -14
-13 | | 87 0 | -126
621
442 | | -3 | < 197 | -117 | | -13 | | 375 | 361 | -8 | | 2758 | 29 79 | 5 | • | < 170 | 52 | -12 | | 479 | 442 | #### Table 5 (cont.) | 5 <u>k</u> <u>1</u> | 100 <u>F</u> o | 100 £; | <u> </u> | ķ | ī | 100 <u>P</u> o | 100 <u>F</u> _c | |---|--|--|--|----|----------------------|--|--| | -71
-10
-0
-7
-7
-5
-5
-3
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1 | 300
<251
243
243
243
243
243
243
243
243
243
255
224
265
265
265
265
265
265
265
265
265
265 | 281
197
131
-212
-982
-982
-986
-205
896
-595
564
-555
564
-555
564
-253
-283
-283
186
519
-105 | -14
-1.12
-1.10
-9.8
-7.6
-54
-2.1
-2.1
-2.1
-3.3
-4.5
-7.7
-7.9
-7.9
-7.9
-7.9
-7.9
-7.9
-7.9 | • | Ė | 619 < 279 295 1790 295 1790 399 399 369 369 369 369 626 201 177 862 214 985 4214 985 4214 627 4214 627 4214 627 4214 | -595
-1797
-1314
-1386
-1534
-538
-652
-652
-652
-652
-652
-625
-7
-7
-934
-501
-505
-505
-505
-505
-505
-505
-505 | | -14
-12
-10
-10
-2
-6
-5
-10
-2
-10
-10
-10
-10
-10
-10
-10
-10
-10
-10 | 7.14
228
<243
1237
<251
693
343
343
395
1384
398
1472
413
<206
221
493
552
493
552
552
552
552
552
552
552
552
552
55 | -755
-187
-106
-1273
-143
-649
-1227
-1227
-1425
-1605
-92
1050
-229
-229
-245
-245
-245
-245
-245
-245
-245
-245 | 11 12 13 14 16 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -2 -1 0 0 2 | 3 | 1* | 610 < 200 | 654
225
93
-115
-110
-300
-300
-317
-1025
12
409
-317
-1025
14
846
-994
-94
-94
-741 | | 20
112 ° 16 3 3 1-15 14 14 14 14 14 14 14 14 14 14 14 14 14 | 150
5 / 2
6 / 3
2 / 5
3 / 5
4 / 7
7 / 8
3 / 5
4 / 6
7 / 6
6 / 6
6 / 6
6 / 6
6 / 6 | 8 179 -710 -146 -247 -246 -511 -46 -517 -492 177 3-492 177 3-492 177 3-492 177 3-562 | 4 5 6 6 7 8 9 9 10 11 12 12 13 12 12 12 12 12 15 6 5 5 4 6 6 7 6 7 6 6 5 6 6 7 6 7 6 6 7 6 7 6 7 | 3 | 0 | 510 1347 1355 2180 4243 425 426 426 426 426 426 426 426 426 426 426 | -779
1293
1296
2247
2247
231
-1048
-149
151
151
147
80
678
-189
-195
-195
-254
-254
-254
-254 | | 5
6
7
8
9
10
21
12
13
13
2-16
3 | 500
214 | -562
-776
- 022
- 032
- 103
- 103
- 133
- 19
- 216
- 235 | 3 2 0 | l. | * 98 7 6 5 4 3 2 1 0 | 2377
840
1221
<145
348
551
268
1379
<283
642
<276
<276 | 759
1167
-14
470
-679
-183
1735
-178
-667
8 | prolate spheroids with their long axes nearly normal to the molecular plane. Final values of r and $R = \Sigma |KF_o - |F_c||/\Sigma KF_o$ were 0.0289 and 0.076, respectively; unobserved reflexions for which $KF_t < |F_c|$ were included in the sums. Observed and calculated structure factors are compared in Table 5. An electron-density section in the mean molecular plane is shown in Fig. 1. The final coordinates of all atoms in the asymmetric unit, derived from the last cycle of least-squares refinement, are listed in Table 2 with respect both to the crystal axes and to a set of orthogonal molecular axes. The latter (Table 3) were chosen to coincide with the principal molecular moments of inertia, calculated for the carbon atoms only, by the same computer program that yielded the equation of the mean plane according to the method of Schomaker, Waser, Marsh & Bergman (1959). Because the molecule has very nearly $\bar{3}$ symmetry (see part II) the moment of inertia is almost axially symmetric; thus the directions of the in-plane inertial axes L and M have slight physical significance. Table 4 gives the average standard deviations computed by the diagonal approximation: $$\sigma^{2}(u_{i}) = \sum w(K^{2}F_{o}^{2} - F_{c}^{2})^{2}/(n-s)A_{ii}$$ (2) where n=911 is the number of reflexions, 883 observed plus 28 threshold, included in the summations of the last refinement cycle, s=118 is the number of parameters u_i adjusted, and $A_{ii} = \sum w(\partial F_c^2/\partial u_i)^2$ is the diagonal element in the normal equation corresponding to the parameter u_i . The approximate validity of the diagonal approximation follows from the near orthogonality of the axes and the large number of reflexions observed. Fig. 2 shows the final values of bond lengths and angles and the distances of all atoms from the mean plane of the carbon atoms. This plane has the equation $$11 \cdot 1795x - 3 \cdot 1616y - 2 \cdot 3798z = 0$$ in which the left side gives the distance from the plane, in \mathring{A} , of a point having fractional coordinates (x, y, z). The results of this analysis are discussed in part II. We are grateful to Professor Franz Sondheimer and Dr Reuven Wolovsky, who brought this problem to our attention and supplied the crystals for this investigation. It is a privilege to acknowledge our indebtedness to the late Professor I. Fankuchen, whose suggestion led to the proper diagnosis of the twinning phenomenon. #### References Berghuis, J., Haanappel, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H. & Veenendaal, A. L. (1955). *Acta Cryst.* 8, 478. Bregman, J. (1962). Nature, Lond. 194, 679. Bregman, J. & Rabinovich, D. (1960). Fifth International Congress, I.U.Cr., Cambridge. CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 747. CRUICKSHANK, D. W. J. (1961). In Computing Methods and the Phase Problem in X-ray Crystallography, p. 32. Pepinsky, Robertson & Speakman, Eds. Oxford: Pergamon Press. HIRSHFELD, F. L. & SCHMIDT, G. M. J. (1956). Acta Cryst. 9, 233. McWeeny, R. (1951). Acta Cryst. 4, 513. PHILLIPS, D. C. (1956). Acta Cryst. 9, 819. ROBERTSON, J. M. & WHITE, J. G. (1945). J. Chem. Soc. p. 607. ROSSMANN, M., JACOBSON, R. A., HIRSHFELD, F. L. & LIPSCOMB, W. N. (1959). Acta Cryst. 12, 530. Schomaker, V., Waser, J., Marsh, R. E. & Bergman, G. (1959). *Acta Cryst.* **12**, 600. SONDHEIMER, F. (1963). Pure Appl. Chem. 7, 363. Sondheimer, F. & Gaoni, Y. (1960). J. Amer. Chem. Soc. 82, 5765. SONDHEIMER, F. & GAONI, Y. (1961). J. Amer. Chem. Soc. **83**, 1259, 4863. Fig. 2. Interatomic distances (Å) and bond angles. Figures near atomic positions give displacements (Å) from mean molecular plane. Sondheimer, F. & Gaoni, Y. (1962.) *J. Amer. Chem. Soc.* **84**, 3520. SONDHEIMER, F. & WOLOVSKY, R. (1959). Tetrahedron Letters, 3, 3; J. Amer. Chem. Soc. 81, 4755. Sondheimer, F., Wolovsky, R. & Amiel, Y. (1962). *J. Amer. Chem. Soc.* **84**, 274. Sondheimer, F., Wolovsky, R. & Gaoni, Y. (1960). *J. Amer. Chem. Soc.* 82, 755.